top ::=   
#  
theorem ::= \begin{theorem}[].
\end{theorem} \begin{proof}
\end{proof}
# these don't seem that convincing at the moment
# lemma ::= \begin{lemma}.
# \end{lemma} \begin{proof}
# \end{proof}
#
# cor ::= \begin{cor}.\end{cor}
proof ::= . .  See .
 . .  . .
conclusion ::=
The result follows by d\'evissage  The theorem follows trivially
 The conclusion is selfevident  Clearly, the theorem holds
 We leave the rest as an exercise  This is the desired result
 The rest follows from  QED
 A simple application of completes the proof
famoustheorem ::=
's theorem
 Hilbert's problem
 the Riemann Hypothesis
 Perelman's theorem (formerly the Poincar\'e Conjecture)
 horizontal Iwasawa theory  Kummer theory  the different
 Dynkin diagrams  Gegenbauer polynomials
 trichotomy
thmstatement ::=
 If then
thname ::=
The
 's
 The
mathguypart ::=  
mathguy ::=
Weierstrass  Thurston  K\"och  Kronecker  Lagrange  Cramer
 Gauss  Euler  Euclid  Mazur  Elkies  Zorn  Bowditch
 Russell  Cantor  Godel  de Moivre  Galois  Schwarz  Erd\H{o}s
 Laplace  Boltzmann  Kantorovich  Abel  Poincar\'e  Peano
 Riemann  Stokes  Lebesgue  Lipschitz  Bunyakovsky  Fermat
 Urys\"ohn  Arzela  Ascoli  Ramanujan  Wiles  Lobachevsky
 Sokhotskii  Bertrand  Fubini  Frobenius  Dynkin  Bieberbach
 Gegenbauer  SwinnertonDyer  Stone  Pythagoras
bookadj ::=
Algebraic  Geometric  Complex  Metrizable  Analytic  NonStandard
  Advanced  NonMetrizable
booksubj ::=
Number Theory  Topology  Analysis  Algebra  Manifolds  KTheory
 Constructions
booktitle ::=
's {\it }
 's {\it }, Edition
 and 's {\it }
 []  []
 {\it Revisited}
 's {\it Revisited}
citation ::=  , page 
,
 , ..
modifier ::=
first  second  third  implicit  inverse  normalizable  last
 mean  average
ordinal ::= 1st  2nd  3rd  4th
mathnoun ::=
openness  completeness  function  isomorphism  diffeomorphism
 homeomorphism  linearity  orthogonality  dimensionality
 diagonalizability  symmetry  discreteness  asymmetry  boundary
 value  covering  inequality  category  compactness  mapping
 contraction  metrization  quantization  multiplier
bookthmtype ::=
Theorem  Lemma  Corollary  Proposition  Definition  Exercise
theoremtype ::=
theorem  lemma  conjecture  hypothesis
subject ::=
,  ,  . then
 ,
statement ::=
let be a
 let be an
 suppose is a
 suppose is an
 suppose is a and
 suppose is an and
thing ::=
a  an 
 and  a unique  a unique
ergo ::= therefore  now  hence  consequently  thus  ergo
connection ::=
there exists such that  if then
prefix ::=
given some  given any  for any  for every  for an arbitrary
cobject ::=
vector  tensor 
 
 of
funname ::= $$
texfun ::= \zeta  \Gamma  p  f  g  y  h  y'  f'  \xi  f^{1}
 \phi  \psi
vobject ::=


setbit ::=
subspace of  vector space over  subset of
 group in  manifold locally resembling
 polytope in  tangent space of at
 irreducible representation of
 dimensional Riemann surface
seriesbit ::=
series in  series  sequence in  sequence
cspacemodifier ::=
bounded  nonempty  closed  compact  trivial  nontrivial
 connected  disjoint  finite  discrete  Euclidean
vspacemodifier ::=
open  unbounded  infinite  isotropic
csequencemodifier ::=
convergent  divergent  bounded  finite  Cauchy  squaresummable
vsequencemodifier ::=
infinite  alternating  unbounded  absolutely convergent
vfunctionmodifier ::=
even  odd  antisymmetric  integrable
cfunctionmodifier ::=
continuous  smooth  differentiable  positive  negative
 nondegenerate  skewsymmetric  linear  multilinear  nonlinear
 differential  quadratic  symmetric  positivedefinite  bilinear
 sesquilinear  piecewise
variable ::=
$\lambda$  $\alpha$  $\beta$  $\gamma$  $\epsilon$  $\delta$
 $\mu$  $\rho$  $\nu$  $\psi$  $a_n$  $x_n$  $x_i$  $\theta$
 $v$  $u$  $w$  $x$  $y$  $z$  $b$  $\omega$  $\phi$
nzdigit ::= 1  2  3  4  5  6  7  8  9
zdigit ::= 0  1  2  3  4  5  6  7  8  9
smallinteger ::=  
biginteger ::= 
pninteger ::= 0   $$
constant ::=
$\pi$  $e$  $\kappa$  $0$  $1$  $\epsilon$  $\delta$ 
texfield ::=
\Z  \Q  \R  \C  \Q_p  \Z/p\Z  \mathbb{H}
texgroup ::=
 ^  H  G
n ::=
n  n   m
field ::=
$$  $$  $$
 $\mathcal{C}()$  $[x]$
 $\mathrm{GL}_()$
 $\mathrm{SU}()$
 $\mathrm{M}_n()$
 $\mathrm{Hom}(,)$
 $\mathrm{Ker}(T)$
 $H^(,)$
 $ \otimes $
 the $p$adics  $\mathrm{Im}(T)$  $\mathrm{Ker}(\phi)$
comparison ::= $\lt$  $\gt$  $\geq$  $\leq$
claim ::=
an
 a
 a
 an
 a
 an
 some vector
 is a welldefined from to
 the following diagram commutes:
 the sequence \begin{eqnarray}\end{eqnarray} is exact
commdiagram ::=
\begin{eqnarray}\end{eqnarray}
 \begin{eqnarray}\end{eqnarray}
 \begin{eqnarray}\end{eqnarray}
heightonediagram ::=
onediagleft ::= \onebyone  \onebyone
 \oneldots\rightaddone{}{}{}{}{}
onediagright ::=
\nothing
 \rightaddone{}{}{}{}{}
 \rightaddonedots{}{}
onediagmiddle ::=
\rightaddone{}{}{}{}{}
 \nothing
 \rightaddone{}{}{}{}{}
heighttwodiagram ::=
twodiagleft ::=
\begin{diagram}
\squarecode
\bottomadd{}{}{}{}{}
\end{diagram}
 \begin{diagram}
\squarecode
\bottomadd{}{}{}{}{}
\end{diagram}
 \twoldots\rightaddtwo{}{}{